Books
A. Ducrot, Q. Griette, Z. Liu and P. Magal. Differential Equations and Population Dynamics I, Introductory Approaches. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing, 2022. 458 pages. DOIA. Ducrot, Q. Griette, Z. Liu and P. Magal. Differential Equations and Population Dynamics II, Advanced Approaches. in preparation (378 pages).
Preprints
- Q. Griette and H. Matano. Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity. arXiv HAL
Publications
- L. Deng, A. Ducrot and Q. Griette. Front propagation into unstable states for periodic monotone reaction-diffusion systems. Nonlinearity, accepted. arXiv HAL
- Q. Griette and F. Herrera. Slowly oscillating periodic solutions in a nonlinear Volterra equation with non-symmetric feedback. J. Differential Equations 460, 2026, n. 114071. arXiv HAL DOI
- Q. Griette and P. Magal. Robin Hood model versus Sheriff of Nottingham model: transfers in population dynamics. SIAM J. Appl. Math. 85(4), 2025, pp.1387-1415.DOI arXiv HAL
- J.-B. Burie, A. Ducrot and Q. Griette. Epidemic models in measure spaces: persistence, concentration and oscillations. J. Evol. Eq. 25, 2025, n. 32. DOI arXiv HAL
- Q. Griette and H. Matano. Front propagation in hybrid reaction-diffusion epidemic models with spatial heterogeneity. Part I: Spreading speed and asymptotic behavior. Asymptot. Anal. 144(3), 2025, pp. 1291-1326. DOI arXiv HAL
- Q. Griette, P. Magal and M. Zhao. Traveling waves with continuous profile for hyperbolic Keller-Segel equation. Eur. J. Appl. Math. 36(3), 2025, pp. 584 - 612. DOI arXiv HAL
- Q. Griette, M. Alfaro, G. Raoul and S. Gandon. Evolution and spread of multi-adapted pathogens in a spatially heterogeneous environment. Evol. Lett. 8(3), 2024, qrad073. DOI bioRxiv
- Q. Griette, C. Henderson and O. Turanova. Speed-up of traveling waves by negative chemotaxis. J. Func. Anal. 285(10), 2023, n. 110115. DOI arXiv HAL
- J.-B. Burie, A. Ducrot and Q. Griette. Asymptotic behavior of an epidemic model with infinitely many variants. J. Math. Biol. 87, 2023, n. 40. DOI arXiv HAL
- J. Demongeot, Q. Griette, Y. Maday and P. Magal. A Kermack–McKendrick model with age of infection starting from a single or multiple cohorts of infected patients. Proc. R. Soc. A 479(2272), 2023. n. 20220381. DOI arXiv
- J. Demongeot, Q. Griette, P. Magal and G. Webb. Vaccine efficacy for COVID-19 outbreak in New York City. Biology 11(3), 2022, 345. DOI medRxiv
- M. Alfaro, Q. Griette, D. Roze and B. Sarels. The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines. J. Math. Biol. 84(3), 2022, n. 20. DOI HAL arXiv
- Q. Griette, J. Demongeot and P. Magal. What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Math. Biosci. Eng. 19(1), 2022. pp. 537-594. DOI medRxiv
- Q. Griette, J. Demongeot and P. Magal. A robust phenomenological approach to investigate COVID-19 data for France. Math. Appl. Sci. Eng. 2(3), 2021, pp. 149-160. DOI medRxiv
- X. Fu, Q. Griette and P. Magal. Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation. Math. Models Methods Appl. Sci. 31(05), 2021, pp. 861-905. DOI arXiv
- Q. Griette and P. Magal. Clarifying predictions for COVID-19 from testing data: The example of New York State. Infect. Dis. Model. 6, 2021, pp. 273-283. DOI medRxiv
- J. Demongeot, Q. Griette and P. Magal. SI epidemic model applied to COVID-19 data in mainland China. R. Soc. Open Sci. 7, 2020, e-print 201878. DOI medRxiv
- X. Fu, Q. Griette and P. Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete Contin. Dyn. Syst. Ser. B 26(4), 2021, pp. 1931-1966. DOI
- J.-B. Burie, A. Ducrot, Q. Griette and Q. Richard. Concentration estimates in a multi-host epidemiological model structured by phenotypic traits. J. Differential Equations 269(12), 2020, pp. 11492-11539. DOI HAL arXiv
- Q. Griette, P. Magal and O. Seydi. Unreported cases for Age Dependent COVID-19 Outbreak in Japan. Biology 9(6), 2020, e-print 132. DOI medRxiv
- X. Fu, Q. Griette and P. Magal. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J. Math. Biol. 80(7), 2020, pp. 2257-2300. DOI HAL arXiv
- L. Girardin and Q. Griette. A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders. Acta Appl. Math. 170, 2020, pp. 123-139.DOI HAL arXiv
- Q. Griette. Singular measure traveling waves in an epidemiological model with continuous phenotypes. Trans. Amer. Math. Soc. 371(6), 2019, pp. 4411-4458. DOI HAL arXiv
- M. Alfaro and Q. Griette. Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology. Nonlinear Anal. Real World Appl. 42, 2018, pp. 255-289. DOI arXiv
- Q. Griette. and G. Raoul. Existence and qualitative properties of travelling waves for an epidemiological model with mutations. J. Differential Equations 260(10), 2016, pp. 7115-7151. DOI HAL arXiv
- Q. Griette, G. Raoul and S. Gandon. Virulence Evolution at the front line of spreading epidemics. Evolution 69 (11), 2015, pp. 2810-2819. DOI
Book chapters
- Q. Griette, Z. Liu, P. Magal and R. Thompson. Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study,, in Mathematics of Public Health, pp. 173-195. Fields Institute Communications, Springer, Cham, 2022. DOI medRxiv
- Q. Griette and S. Motsch. Kinetic equation and self-organized band formations, in Active particles, Vol. 2., pp. 173--199. Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019. arXiv