Quentin Griette

Books

A. Ducrot, Q. Griette, Z. Liu and P. Magal. Differential Equations and Population Dynamics I, Introductory Approaches. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing, 2022. 458 pages. DOI
A. Ducrot, Q. Griette, Z. Liu and P. Magal. Differential Equations and Population Dynamics II, Advanced Approaches. in preparation (378 pages).

Preprints

Publications

  1. L. Deng, A. Ducrot and Q. Griette. Front propagation into unstable states for periodic monotone reaction-diffusion systems. Nonlinearity, accepted. arXiv HAL
  2. Q. Griette and F. Herrera. Slowly oscillating periodic solutions in a nonlinear Volterra equation with non-symmetric feedback. J. Differential Equations 460, 2026, n. 114071. arXiv HAL DOI
  3. Q. Griette and P. Magal. Robin Hood model versus Sheriff of Nottingham model: transfers in population dynamics. SIAM J. Appl. Math. 85(4), 2025, pp.1387-1415.DOI arXiv HAL
  4. J.-B. Burie, A. Ducrot and Q. Griette. Epidemic models in measure spaces: persistence, concentration and oscillations. J. Evol. Eq. 25, 2025, n. 32. DOI arXiv HAL
  5. Q. Griette and H. Matano. Front propagation in hybrid reaction-diffusion epidemic models with spatial heterogeneity. Part I: Spreading speed and asymptotic behavior. Asymptot. Anal. 144(3), 2025, pp. 1291-1326. DOI arXiv HAL
  6. Q. Griette, P. Magal and M. Zhao. Traveling waves with continuous profile for hyperbolic Keller-Segel equation. Eur. J. Appl. Math. 36(3), 2025, pp. 584 - 612. DOI arXiv HAL
  7. Q. Griette, M. Alfaro, G. Raoul and S. Gandon. Evolution and spread of multi-adapted pathogens in a spatially heterogeneous environment. Evol. Lett. 8(3), 2024, qrad073. DOI bioRxiv
  8. Q. Griette, C. Henderson and O. Turanova. Speed-up of traveling waves by negative chemotaxis. J. Func. Anal. 285(10), 2023, n. 110115. DOI arXiv HAL
  9. J.-B. Burie, A. Ducrot and Q. Griette. Asymptotic behavior of an epidemic model with infinitely many variants. J. Math. Biol. 87, 2023, n. 40. DOI arXiv HAL
  10. J. Demongeot, Q. Griette, Y. Maday and P. Magal. A Kermack–McKendrick model with age of infection starting from a single or multiple cohorts of infected patients. Proc. R. Soc. A 479(2272), 2023. n. 20220381. DOI arXiv
  11. J. Demongeot, Q. Griette, P. Magal and G. Webb. Vaccine efficacy for COVID-19 outbreak in New York City. Biology 11(3), 2022, 345. DOI medRxiv
  12. M. Alfaro, Q. Griette, D. Roze and B. Sarels. The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines. J. Math. Biol. 84(3), 2022, n. 20. DOI HAL arXiv
  13. Q. Griette, J. Demongeot and P. Magal. What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Math. Biosci. Eng. 19(1), 2022. pp. 537-594. DOI medRxiv
  14. Q. Griette, J. Demongeot and P. Magal. A robust phenomenological approach to investigate COVID-19 data for France. Math. Appl. Sci. Eng. 2(3), 2021, pp. 149-160. DOI medRxiv
  15. X. Fu, Q. Griette and P. Magal. Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation. Math. Models Methods Appl. Sci. 31(05), 2021, pp. 861-905. DOI arXiv
  16. Q. Griette and P. Magal. Clarifying predictions for COVID-19 from testing data: The example of New York State. Infect. Dis. Model. 6, 2021, pp. 273-283. DOI medRxiv
  17. J. Demongeot, Q. Griette and P. Magal. SI epidemic model applied to COVID-19 data in mainland China. R. Soc. Open Sci. 7, 2020, e-print 201878. DOI medRxiv
  18. X. Fu, Q. Griette and P. Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete Contin. Dyn. Syst. Ser. B 26(4), 2021, pp. 1931-1966. DOI
  19. J.-B. Burie, A. Ducrot, Q. Griette and Q. Richard. Concentration estimates in a multi-host epidemiological model structured by phenotypic traits. J. Differential Equations 269(12), 2020, pp. 11492-11539. DOI HAL arXiv
  20. Q. Griette, P. Magal and O. Seydi. Unreported cases for Age Dependent COVID-19 Outbreak in Japan. Biology 9(6), 2020, e-print 132. DOI medRxiv
  21. X. Fu, Q. Griette and P. Magal. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J. Math. Biol. 80(7), 2020, pp. 2257-2300. DOI HAL arXiv
  22. L. Girardin and Q. Griette. A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders. Acta Appl. Math. 170, 2020, pp. 123-139.DOI HAL arXiv
  23. Q. Griette. Singular measure traveling waves in an epidemiological model with continuous phenotypes. Trans. Amer. Math. Soc. 371(6), 2019, pp. 4411-4458. DOI HAL arXiv
  24. M. Alfaro and Q. Griette. Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology. Nonlinear Anal. Real World Appl. 42, 2018, pp. 255-289. DOI arXiv
  25. Q. Griette. and G. Raoul. Existence and qualitative properties of travelling waves for an epidemiological model with mutations. J. Differential Equations 260(10), 2016, pp. 7115-7151. DOI HAL arXiv
  26. Q. Griette, G. Raoul and S. Gandon. Virulence Evolution at the front line of spreading epidemics. Evolution 69 (11), 2015, pp. 2810-2819. DOI

Book chapters

  1. Q. Griette, Z. Liu, P. Magal and R. Thompson. Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study,, in Mathematics of Public Health, pp. 173-195. Fields Institute Communications, Springer, Cham, 2022. DOI medRxiv
  2. Q. Griette and S. Motsch. Kinetic equation and self-organized band formations, in Active particles, Vol. 2., pp. 173--199. Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019. arXiv

Thesis manuscripts

Habilitation HAL
Ph.D. HAL